DEVELOPMENT OF A NEW OPTICALLY PUMPED POTASSIUM MAGNETOMETER

Dr. Ivan Hrvoic, Ph.D., P.Eng.
President, GEM Advanced Magnetometers

Manager, Communication

Mike Wilson
Electronics Technologist

Anthony Szeto, Ph.D., P. Geo.
Associate Professor, York University

SAGEEP 2003
INTRODUCTION

- Near Surface Requirements
- Recent Developments
- Optically Pumped Potassium Theory
- GSMP-40 Potassium Design Considerations
- Short Case History with Target Comparisons
NEAR SURFACE REQUIREMENTS

- Migrating from “bump” location
 - Fast, “highly detailed” mapping and characterization

- Parallel requirement for manufacturers to develop instrumentation to meet needs:
 - More detail for analysis & modeling
 - Higher productivity
RECENT DEVELOPMENTS

- **Overhauser** for walking surveys (v6.0 2000):

 - High sensitivity, low weight, minimal power, high absolute accuracy & minimal orientation error

- Ongoing R&D led to **Optically Pumped Potassium** for walking & vehicular surveys (2001 & 2002):

 - Very high sensitivity, high absolute accuracy, minimal orientation error and 20x sampling

Our World is Magnetic.
OVERHAUSER MAGNETOMETER
POTASSIUM MAGNETOMETER

- Multi-sensor, "Sweep Initiated" system that locks on to the first peak in Potassium spectrum
POTASSIUM SPECTRAL LINES

6 Narrow Spectral Lines approximately 100 nT apart

Narrow, symmetrical lines a key enabler of the technology

Affect sensitivity and gradient tolerance ... GEM developed gradient optimization procedures (2002)

Sweep and “lock” on to first line for measurement

Our World is Magnetic.
POTASSIUM - PRINCIPLES

1. Light Polarization:
 - Illuminate K sensor bulb with light of a specific wavelength and drive high energy valence electrons (L2) to metastable state.
 - Electrons decay back to L1 & L2 levels. Eventually, L2 level is depleted and potassium vapour is fully polarized. K bulb is transparent.

2. Depolarize using RF:
 - Restore populations of nuclei to initial states. K bulb is opaque.
POTASSIUM - PRINCIPLES

Light Polarization

Absorption

Spontaneous decay

RF Depolarization

Our World is Magnetic.
POTASSIUM - PRINCIPLES

3. Detect light modulation and “lock”:
 - Chamber oscillates from transparent to opaque. Use this light modulation to detect a potassium resonance signal.
 - “Lock” to this frequency using a designated “VCO” circuit.

4. Measure the frequency of light modulation:
 - Convert to magnetic units.
POTASSIUM - MEASUREMENT

- K-lamp
- Circular Polarizer
- Filter
- Potassium bulb
- Photo measurement
- Depolarization Coils

GEM SYSTEMS
POTASSIUM - SENSOR
WHY DESIGN POTASSIUM?

• Very high sensitivity per sensor (0.009 nT / √Hz @ 10 samples per second)

• Gradient tolerance (13,500 nT / m @ 40 mm)

• High sampling rate (20 x per second +) for speed of operation and bandwidth

• “Clean” signal (“heading” errors @ +/-0.025 nT) due to narrow spectral lines

• High absolute accuracy (+ / - 0.1 nT)
SENSITIVITY - COMPARISON

Single Sensor Values (nT)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>3s</th>
<th>1s</th>
<th>0.5s</th>
<th>0.2s</th>
<th>0.1s</th>
<th>0.05s</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM-19T</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-19</td>
<td>0.01</td>
<td>0.014</td>
<td>0.035</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSMP-40</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.009</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

Graph shows sensitivity comparison with sampling intervals of 3s, 1s, 0.5s, 0.2s, 0.1s, and 0.05s.
SENSITIVITY = \(k \frac{\Gamma}{\gamma_n S_n} \)

- \(k = \) Constant
- \(\Gamma = \) Spectral Line Width
- \(\gamma_n = \) Gyroscopic Constant
- \(S_n = \) Signal / Noise Ratio

<table>
<thead>
<tr>
<th>Width (nT)</th>
<th>Method</th>
<th>(\gamma_n (\text{MHz/T}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 to 1.0</td>
<td>Potassium</td>
<td>7000</td>
</tr>
<tr>
<td>4</td>
<td>Overhauser</td>
<td>42.58</td>
</tr>
<tr>
<td>15</td>
<td>Proton</td>
<td>42.58</td>
</tr>
<tr>
<td>20</td>
<td>Cesium</td>
<td>3500</td>
</tr>
</tbody>
</table>

Our World is Magnetic.
GRADIENT TOLERANCE - 2002

• “Extra” sensitivity that can be “traded off”

• Previous sensor tolerance = 2,500 nT / m
 with 0.001 nT single sensor noise (unfiltered at 1 Hz)

• New 40mm sensor tolerance = 13,500 nT / m
 with 0.002 nT single sensor noise (unfiltered at 1 Hz)

• Tolerance for “noisy” settings plus very very high sensitivity work (archaeology)

• Look at the settings in which systems to be used
“CLEAN” SIGNAL

- Isolate geophysical sources from “heading errors”
 - Spectral shifts due to sensor geometry
- Potassium’s 6 spectral lines at well-defined locations 100 nT apart
- Through careful sensor design, each line can be made very narrow (i.e. between 0.15 - 1.0 nT).
- Locate and lock very precisely on a designated line
- Minimal heading errors (+/- 0.025 nT)
SPEED OF OPERATION

- Speed is key as industry moves to vehicular surveys
- Reflects Nyquist bandwidth (fastest detectable signal)

<table>
<thead>
<tr>
<th>Nyquist</th>
<th>0.5</th>
<th>1 Hz</th>
<th>2.5</th>
<th>5 Hz</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSMP-40</td>
<td>0.002</td>
<td>0.003</td>
<td>0.005</td>
<td>0.009</td>
<td>0.014</td>
</tr>
</tbody>
</table>
ABSOLUTE ACCURACY

Key for consistent surveys and for multiple sensor arrays

- All components operating within the same tolerances
- Consider factors that affect field values and accuracy
 - Gyromagnetic constant uncertainties
 - Zero crossing algorithms and heading errors
- +/- 0.1 nT. Field results show that GSMP-40 does not introduce substantial biases related to time, sensor orientation or sensor changes.

Our World is Magnetic.
CASE HISTORY

- York Environmental Site (YES), York University
- Opened in Fall, 1985 - 110m x 95m
- 42 - 15m x 15m cells containing “targets”
- First complete survey by a magnetic instrument manufacturer in December 2002
- Vertical gradiometer survey over parts of 2 days (no base station)

Our World is Magnetic.
YES CELL CONFIGURATION

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Chalcopyrite Ore EMPTY</td>
<td>Oil EMPTY</td>
<td>EMPTY</td>
<td>EMPTY</td>
<td>Metallic Mine</td>
<td>Plastic Mines</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EMPTY</td>
<td>Paint Cans</td>
<td>Steel</td>
<td>Steel</td>
<td>Al</td>
<td>Artillery Shell</td>
<td>Artillery Shell</td>
</tr>
<tr>
<td>C</td>
<td>Brass Steel Paint Cans</td>
<td>Steel</td>
<td>Steel</td>
<td>Steel</td>
<td>EMPTY</td>
<td>EMPTY</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Al Paint Cans</td>
<td>Steel Plastic</td>
<td>Plastic Al Fe</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Al Clay</td>
<td>EMPTY</td>
<td>EMPTY</td>
<td>Plastic Al Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>EMPTY Clay Concrete</td>
<td>EMPTY</td>
<td>Plastic Al Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOTAL FIELD, GRAD & ASIG GRAD

“Target-rich” with many Dipolar & Monopolar Signatures

Simplification through Analytic Signal

Our World is Magnetic.
TOTAL FIELD ASIG & GRADIENT

- ASIG shows region to left acquired on day 2 (no base station)
- Gradient removes diurnal

Our World is Magnetic.
• ASIG simplifies characterization & targeting of anomalies / background

• Prepares the way for analysis

Our World is Magnetic.
ARTILLERY SHELL - 0.5m
IRON PIPE (N/S) - 0.5m
CLAY POTS - 1.0m

Fig 34: E2, south-western sub-cell.
STEEL DRUM LIDS - 1.0m
STEEL DRUM - 0.6m

Fig 50: D3. Vertically placed
STEEL PLATES - 2.0m
CONCRETE BUNKER - 1.0m
CONCRETE BUNKER - 1.0m

Model depth = 0.9m, infinite depth
SUMMARY

+ R&D ongoing in magnetometer / gradiometer systems

+ Potassium instrumentation takes advantage of narrow line, “Sweep Initiated” sensor physics and electronics

+ Design considerations reflect needs for “high detail” mapping and rapid sampling

+ Potassium, Overhauser and Proton technologies offer a range of sensitivities, gradient tolerances, etc. that should be understood in selecting appropriate tool for problem

+ Potassium test results demonstrate effectiveness of tool for detailing and characterization

Our World is Magnetic
Thank you for your attention ...